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We study the coherent dynamics of a thin layer of two-level atoms driven by an external coherent
field and a phase-conjugated mirror (PCM). Since the variables of the system are defined on the
Bloch sphere, the third dimension is provided by the temporal modulation of the Rabi frequencies,
which are induced by a PCM which reflects an electric field with a carrier frequency different from the
incident one. We show that as the PCM gain coefficient is changed, period doubling leading to chaos
occurs. We find crises of attractor-merging and attractor-widening types related to homoclinic and
heteroclinic tangencies, respectively. For the attractor-merging crisis we find the critical exponent
for the characteristic time of intermittency versus the control parameter which is given by the gain
coefficient of the PCM. We show that during the crisis of attractor-widening type, another crisis due
to attractor destruction occurs as the control parameter is changed. The latter is due to the collision
of the old attractor with its basin boundary when a new attractor is created. This new attractor is
stable only in a very small interval in the neighborhood of this second crisis.

PACS number(s): 05.45.+b,42.65.—k

I. INTRODUCTION

There has been an increasing interest in the dynamics
of thin layers of two-level or multilevel atoms interact-
ing with driving fields {1-4]. In this article we present
a study of the chaotic behavior that occurs in a system
consisting of a thin layer of two-level atoms interacting
with an external coherent field and a phase-conjugated
mirror. Here we use the semiclassical, rotating-wave and
plane-wave approximations [5]. Since we neglect any cou-
pling with a reservoir we study the long-term dynamics
of this coherent system. In Ref. [6] collective decay or
excitation of a point sample of two-level atoms was an-
alyzed. A further reformulation and extension of this
problem was given in article [4], where the case of exact
resonance (one mode approximation) was studied. Here
we analyze the case when the phase-conjugated mirror
reflects a field with a carrier frequency different from
the incident one. It is precisely this frequency mismatch
that makes the system time dependent, i.e., explicit time-
dependent Rabi frequencies appear which drive the sys-
tem of two-level atoms periodically. The variables of the
differential equation describing this optical system lie on
a sphere. Therefore the system has a three-dimensional
phase space: two dimensions due to the sphere and the
explicit periodic time dependence in the equations. As
a result chaos may occur. In particular, we study crises
that appear in this system. Crises taking place in dissi-
pative diffeomorphisms on the sphere had been studied
to a lesser extent than in driven dissipative systems on
the plane such as the Van der Pol oscillator (7).

In a crisis a sudden change in the dynamics of a chaotic
attractor occurs as a control parameter is changed [8,9].
More specifically, these sudden changes may have three
forms. The first, called attractor destruction, refers to
the disappearance of a chaotic attractor. The attractor
becomes just a chaotic transient. The second type of
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crisis, known as attractor widening, corresponds to a dis-
continuous change in the size of a chaotic attractor with
random bursts between the old and new region occupied
by the attractor. Finally, the third one, called attractor
merging, refers to the merging of two or more existing at-
tractors to form a single attractor [8,9]. An alternative to
study these phenomena is in terms of the characteristic
time for a given crisis [8,9]. The validity of the scal-
ing behavior for the characteristic time in the vicinity of
crises had been confirmed in recent experiments [10, 11].

In Sec. II we present a set of equations that describe
our optical system, stressing the way our equations dif-
fer from those of Ref. [4]. In Sec. III two fundamental
symmetries of the system are established. We show a bi-
furcation diagram for the variables of the system sampled
at every driving period versus the control parameter that
is given by the gain coefficient of the phase-conjugated
mirror (u). Poincaré sections are shown which give us
some insight into the crisis phenomena that we consider.
In Sec. IV we study two successive crises that occur in
our system as u is changed. We show that the first crisis
is related to a homoclinic tangency between the stable
and unstable manifolds. We calculate the critical expo-
nents which are related to the average switching time
between different attractors in an attractor-merging cri-
sis. Further, the plots of the Lyapunov exponents as a
function of u are given. The second crisis is shown to be
related to a heteroclinic tangency of manifolds. Here we
find that a new chaotic attractor appears which destroys
the old attractor. This attractor is related to the onset
of new tangencies of the invariant manifolds. In Sec. V
we give the conclusions.

II. GENERAL THEORY

Here we show the equations that describe the inter-
action between a system of two-level atoms pumped si-

196 ©1993 The American Physical Society



48 CRISES-INDUCED INTERMITTENCIES IN A COHERENTLY ... 197

multaneously by a phase-conjugated mirror (PCM) and
by an external coherent field. In Ref. [4] the case of
exact resonance between the frequencies of the external
field, the transition frequency of the two-level atoms and
phase-conjugated mirror pump fields, has been studied.
There it was assumed that the PCM is produced by four-
wave mixing [12]. Here we analyze the case when the ex-
ternal field and PCM pump field frequencies are different.
The latter lead us to time-dependent Rabi frequencies
for the Bloch vector components, as we will see below.
Next we give the equations stressing the way the time-
dependent Rabi frequencies are obtained.

Let us consider the system shown in Fig. 1. The region
z<!l (I>0)is occupied with a dielectric whose dielec-
tric constant is €, a PCM occupies the region (z > 1). A
thin layer of two-level atoms with thickness d < A, where
A is the wavelength of the emitted light by the atoms in
vacuum, is centered parallel to the interface (z = 0). We
assume that the space between the atomic layer and the
interface is [ > A and that [ is of the same order of
magnitude of the distance from the atomic dipole to its
radiation zone, so that retardation effects are negligible.
A coherent applied field is incident perpendicularly upon
the interfaces from the region z < 0. The field is a plane
wave linearly polarized along the z axis tuned at exact
resonance with the atoms. Taking into account the pres-
ence of the thin polarizing layer of two-level atoms, the
boundary conditions at z = 0 are

Em(0+7t) - E:B(O_7t) = 0»

(1)
47 OP,

+ 4 - =_2To=
Hy(0%,8) = Hy(0™,8) ==~
Here E;(2,t) and Hy(2,t) are the components of the elec-
tromagnetic field [13], and Py is the surface polarization
of the atomic thin film. The boundary conditions at z =
will be written below. The electric fields and the polar-
ization have the following form for z < 0:
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FIG. 1. Schematic representation of a thin layer of two-

level atoms interacting with an external laser field Fo and a
phase-conjugated mirror (PCM).

L

1 .
EWM(2,t) = ﬁ{ Ey(z,t) expli(kz — wt)]
+E,(2,t) exp[—i(kz + wt)] + c.c.},
while for 0 < z < [ we obtain:

ED(z,¢) = —\;—5{ Ej(z,t) expli(kz — wt)]

+Ep(2,t) exp[—i(kz + wt)] + c.c.},

and

P, = %[Pexp(—iwt) +ecl. )

Here Ey(z,t), Er(2,t), Ef(2,t), Fp(2,t), and P are the
slowly varying envelopes of the incident, reflected, for-
ward, backward, and polarization fields, respectively, and
k = wy/e.

At the interface z = [ the phase-conjugated mirror pro-
duces a reflected wave Epcm whose amplitude is defined
as follows [12]:

Epcm = Ep exp(—tkl) = p[Ef exp(ikl)]", (3)

where p = |u|exp(iy), | | stands for the PCM gain co-
efficient, the phase 9 is a time-dependent function and is
given by ¢ = 19 +6t, where 1y is the PCM intrinsic phase
[12], and & is the frequency mismatch between the carrier
frequency of the external driving field w and the carrier
frequency of the conjugate field wp (6 = wp — w). The
processes that may produce this mismatch are four-wave
mixing and stimulated Brillouin scattering. If the PCM
was created by four-wave mixing then the conjugated
field Ep would have a carrier frequency wp = w; +ws —w,
according to the conservation of photon energy in this
process. Here w; and w; are the frequencies of the pump
fields. We assume that the conjugated field E; propa-
gates in opposition to the incident probe field, following
the conservation of photon momentum in this process
[12]. In the case when the PCM is generated by stimu-
lated Brillouin scattering, the conjugate field carrier fre-
quency wp happens to be down-shifted due to the inter-
action between the forward coherent optical field and the
acoustic wave in a nonlinear medium [12].

Following Ref. [4] we find the total electric field at the
atomic layer position (z = 0). This self-consistent field is
inserted in the Bloch equations, which after a change of
variables yield [4]

ax
dt
-~ =0,YD-Q,D, (4)

=0,XD +Q,D,
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Qr =000, sin ((p —
Q, =90, cos (cp -

2
Q=X |E|.
g

Here D is the population inversion, X and Y are
the slowly varying components of the atomic polariza-
tion. The external coherent field at z = 0 is written as
Ey =| Ep | exp(ip). The time has been renormalized
t — gt. g is the cooperative decay rate and x is the
atom-field coupling constant [4]. Here we assumed that
the transition frequency between the upper and lower
energy levels of the two-level atoms coincides with the
carrier frequency of the external laser field w. We con-
sider the case when ¢ = 0, ¥ = 0 and § is renormalized
to § = (wp —w)/29 = (w1 + w2 — 2w)/2g. In this way
using the definition for ¢ we obtain ¢ — /2 = —6t. At
exact resonance, i.e., when § = 0, these equations had
been solved [4].

The equations studied in this work are a limit when the
coupling of the two-level atoms and reservoir is neglected
[4]. For a pure radiative process, defining the transversal
decay rate by v, one may find that the cooperative decay
rate is g = yn, where n is the surface atomic density. In
this case the components of the Bloch vector would suf-
fer an additional decay given by a purely linear damping
term. By renormalizing the time ¢ — gt, as done here,
the coefficients of these linear damping terms will scale
as v/g =~ 1/n. Assuming a big enough value for the sur-
face atomic density n, the linear decay coefficients may
be considered as a small perturbation in the system, as a
result of which the qualitative dynamics of the system in
an interval of the control parameter space u is the same
with or without linear damping terms. A more rigorous
formulation of the conditions under which a small per-
turbation does not change qualitatively the dynamics of
our system requires a study of the associated structural
stability. We consider this study as a first step to analyze
the more realistic case that takes into account the effect
of the reservoir, since the theory of two-dimensional maps
is much better understood than maps in higher dimen-
sions.

Finally as regards the experimental feasibility of the
present system, where the small linear damping terms
might be included, it will be ideal that the experiment
reproduce the general features of Fig. 1, as discussed
in Ref. [4]. However, one may also consider situations
where a system of two-level atoms is contained in res-
onant cavities working in the bad-cavity limit. These
are millimeter-wave cavities containing Rydberg atoms
where superradiant behavior has been observed [14] or
ring cavities containing two-level atoms suited for su-
perradiance [15]. However, here two important elements
must be included. One is the external coherent field that
is assumed to be in resonance with the atomic transition

frequency and the cavity frequency. The other is the
PCM that transforms the output field of the system and
has to be reinjected in the resonant cavity. Let us point
out that in the case of the millimeter-wave cavity the ac-
tive atoms occupy a thin slab which has a width smaller
than the millimeter wavelength [14], and therefore may
be considered as a thin film of two-level atoms.

III. PROPERTIES OF THE EQUATIONS

From now on g will stand for |u|. The system of equa-
tions (4) may be rewritten in the following way:

d¢

%=—2chosd> sm(f)—l—Qz——l——Ecosqb
D
+ Q,, ———=sin ¢,
‘Vi-D? (5)
dD 2y 2.2 2 2
:l?—_—_@z(l—D )sin® ¢ — ©4(1 — D*) cos® ¢

—Q:V1-D?sing + Qyv1—D2cos¢
upon the following change of coordinates:
D=D,

=+4/1— DZ?sin¢,
=1+/1— D2cos ¢.

The instantaneous rate of change is given by the diver-
gence of the flow:

Bq.’) oD
EX) BD
According to Eq. (6), volumes do not change uniformly
everywhere in phase space. In fact, they may contract
or even expand. On the average, however, they contract
for the parameter values that we use as we shall discuss
next. The limit of this average volume change Ag is a def-
inite quantity and equals the sum of the three Lyapunov
exponents of Egs. (5) when regarded as an autonomous
system [16]

VE= =2D. (6)

2 .2
Aoztgr&?/oD(q)dq—-tgrg)?g:)\l%—/\g—t—)\g. 7)

Since time flows uniformly one of the Lyapunov expo-
nents, say As, is equal to zero.

It is known that all strange chaotic attractors in a flow
defined in a phase space of three dimensions have the
same spectrum of Lyapunov exponents (+,0, —) [16,17].
For periodic orbits the spectrum is (0, —, —

In Fig. 2(a) we see the attractor for ,u = 2 i.e., the
Poincaré section of the flow of Egs. (5) in the (¢, D) plane
sampled every period of the Rabi frequencies Q, and £,,.
In Figs. 2(b) and 2(c) the maximum Lyapunov exponent
A1 and the Kaplan-Yorke dimension Dky are shown as
a function of time, i.e., the number of iterates. Near the
crises dimension Dky is the typical value for the attrac-
tors that we study. In these figures 50 000 points (orbits)
had been plotted after a transient of 300 periods.

Equations (5) may be studied using the Poincaré map-
ping technique, i.e., we study the set of points generated
by the intersection of the flow with the planes ¢t = nT,
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where T' = 2m/6 = 2. In Egs. (5) there are two symme-  The second symmetry S, is given by
tries . The first symmetry S; is the following:

DD D — —D,
- ’ ¢—"—¢, 9
b o+, ® e (9)

t—t+ T t+1
— _—= .
2 It means that under the operations of symmetry S; and
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FIG. 2. Gain coefficient 4 = 2.0. In all these plots after a transient time of 300 periods the next 50000 periods are
considered. (a) Poincaré section (¢, D) of the flow given by Eq. (5) taken by sampling its solution every period of the Rabi
frequencies Q, and ,. (b) Transient for the maximum Lyapunov exponent A1 vs time (number of iterates). The limit at
infinity gives A;. (c) Transient for the Kaplan-Yorke dimension Dky.
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S5 the form of the equations does not change. In the
present paper we study the transition to chaos by chang-
ing only one control parameter, namely, the parameter
of nonlinearity pu. To this end we keep the parameter
Qp = 1, which corresponds physically to an equality be-
tween the Rabi frequency (proportional to the external
laser amplitude) and the collective damping coefficient g.
Here the length of the Bloch vector has been normalized
to 1. On the other hand, § = (w; + wy — 2w)/2g = 7 we
believe is not an unphysical estimate.

We study the behavior for 4 > 1, which means that
the PCM reflects a field whose intensity is higher than
the incoming one. We numerically checked that for 4 < 1
one has only periodic stable orbits. Let us point out that
by definition the symmetry property S; of our dynamical
system indicates that we are dealing with a reversible flow
[18,19]. Several studies have been carried out recently on
reversible flows or maps [20-22]. A typical property of
reversible flows is the possible existence of conservative
[Kol'mogorov-Arnol’d-Moser (KAM) tori] or dissipative
(strange attractors) behavior in different regions of phase
space. In particular a model for the CO, laser driven by
an external coherent field shows this behavior [22]. Here
the disappearance of conservative regions and the onset of
dissipative structures are related to symmetry-breaking
bifurcations. Near the crises and using grids with 300
different initial conditions each chosen randomly we al-
ways found that after a transient the orbit reaches an
attractor. On the other hand, near the crises, all the
period-1 orbits found on the sphere are saddles and their
corresponding eigenvalues yield a product whose abso-
lute value is less than 1. Therefore we conclude that we
are dealing with a purely dissipative (reversible) system
for which we apply the corresponding theory [16]. That,
however, does not exclude the possibility that for other
sets of parameters both conservative and dissipative be-
havior may coexist in our system. Considering the above
symmetries we may more easily study the bifurcation di-
agrams shown in Figs. 3(a) and 3(b) for ¢ and D, respec-
tively. Let us mention that the number of transients and
the iterated points had been set equal to 300 and 400,
respectively. This, according to our numerical calcula-
tions, is an optimum number of iterated points necessary
to eliminate transients, except in the neighborhood of the
critical values p where crises arise and longer transients
are required.

In the present system we have found that there are at
most two possible basins of attraction for the selected
parameters. In the case when there are two basins of
attraction in the Poincaré section, say B; and By, with
corresponding attractors A; and A, one may pass from
A, (A3) to Az (A;) by applying the symmetry operation
S1 to any point of A; (A3) and allowing the flow to have
an evolution for half a period. However, when there is
only one basin of attraction B with its corresponding at-
tractor A, then the above-mentioned operation gives rise
to a point that belongs to the same attractor A. Notice
that the attractors mentioned above may be periodic or
chaotic.

The second symmetry operation S; allows us to find
the position of a saddle point P*, symmetric to a saddle

point P, such that P* = (D*,¢*) = —(D,¢) = —P.
Besides, upon the symmetry operation Sz the dynamics
backward in time is the same as the dynamics forward for
Egs. (5), but for a change in the sign of D and ¢. That
tells us that if we find a chaotic attractor which embeds
a set of saddle points P; = (D;,¢;), ¢ = 1,...,n, then a
repeller exists which embeds the symmetric set of points
P* = —(D;,¢;), ¢ = 1,...,n. This repeller is in fact
the inset (the stable manifold) of points P}, since in the
dynamics backwards in time, this inset is the attractor
[outset (unstable manifold)] for these points. Notice that
these saddles may have arbitrary period.

To illustrate the latter we see in Fig. 4 the two different
attractors A; and A; at uj = 1.945 just before a crisis
takes place. In Fig. 5 we see the only attractor and its
corresponding repeller at pu; = 2.04 slightly before a sec-
ond crisis occurs. Here after a transient of 300 periods,
5000 orbits were considered for each attractor or repeller.

According to the classification of crises given by Gre-
bogi and co-workers [8, 9], we could expect that for a crit-
ical value of 4 = p; such that 7 < p; attractor merging
could occur, i.e., both attractors A; and A; at u; form
a single attractor A, as one may check by comparing
Fig. 4 and the bifurcation diagrams given by Figs. 3(a)
and 3(b).

On the other hand, at the critical value u = u2 such
that p5 < po attractor widening could occur due to the
collision of the only attractor A with the inset of the
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FIG. 3. Bifurcation diagrams for the azimuthal angle ¢
vs gain coefficient u (a) and inversion D vs u (b).
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FIG. 4. Poincaré section for two different chaotic attrac-
tors A1 (points) and Az (solid points) for p = u7 = 1.945,
just before the first crisis occurs at yu = pi.

saddle points P} (the repeller) symmetric to those points
P; embedded in the attractor. For u values contained
between p; and pg and their vicinities there are only six
different period-1 saddle points in the Poincaré section.
The above-mentioned crises-induced intermittencies will
be treated in the next section.
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FIG. 5. Poincaré section for the only attractor A (points)

and its repeller (solid points) for 4 = pu; = 2.04, just before
the second crisis occurs at u = p2.

IV. INTERIOR CRISES INDUCED
BY THE PCM GAIN COEFFICIENT

In Fig. 6 we draw again for u = 1.945 all the period-1
saddle points, the unstable manifolds corresponding to
the attractors A; and As, and the stable manifolds that
form the basin boundary for the attractors 4; and A,.
As it is clearly seen in Fig. 6 the formation of successive
fingers (lobes) in the stable manifolds will give rise to an
infinite sequence of homoclinic points [16]. At the first
crisis (4 = p1) both attractors A; and A, touch simul-
taneously the boundary that separates their two basins.
This is the signature of attractor merging [9]. The latter
occurs because our system has the symmetry property
S1. In other words, any event happening to attractor
Ay (in particular, the boundary crisis) will occur with
attractor Az which is obtained upon application of the
symmetry S; to attractor A;. Attractor A, reflects the
dynamics of A just half a period later.

For u slightly larger than p; the generated points will
intermittently be localized in any of the former attrac-
tors, as suggested by Fig. 7 for ¢ versus time when
# = 1.96. Similar intermittent pictures had been ob-
tained for flows such as the forced damped pendulum
[24] and the forced double-well Duffing equation [25]. In
these cases two attractors merge to form a single attrac-
tor.

It has been proven by Young [26] that for two-
dimensional invertible maps the information dimension
Dy equals the Kaplan-Yorke dimension Dgy:

A1

Dy KY +|/\2',

where A; and A2 are the positive and negative Lyapunov
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FIG. 6. For u = py = 1.945 we plot the single period

unstable orbits (squares). Unstable manifolds of the saddles
embedded in the chaotic attractor (solid lines). Stable mani-
folds of the saddles embedded in the basin boundary (dotted
lines).
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FIG. 7. For pu = 1.96 > ua, i.e., slightly after the first
crisis, we plot the azimuthal angle ¢ vs the number of iterates.

exponents, respectively.

In Figs. 8(a) and 8(b) we show the bifurcation dia-
grams as u is varied for the positive Lyapunov exponent
A1 and the information dimension Dy. The transient time
of A\; and Dy has been set equal to 8000 periods and only
their values at the next 300 periods had been plotted for
each u value. The typical error we make in this plot-
ting fluctuates between 1% and 0.1% of the real values
of A\; and Dj;. It happens since the temporal evolution
of these quantities for this value of p is similar to those
when p = 2.0 as shown in Figs. 2(b) and 2(c).

In codimension-1 bifurcations, intermittencies due to
crises of the type attractor merging or attractor widen-
ing cause a discontinuous jump in size of the chaotic at-
tractor, in such a way that the chaotic attractor just be-
fore bifurcation lies inside the chaotic attractor just after
bifurcation [23]. It has been stated, at least regarding
differential equations having a smooth vector field, that
the shift of dimension (measure) in attractor-merging or
attractor-widening crises is continuous as we change a
control parameter [23]. Accordingly, we believe that the
behavior of Dy in terms of x in Fig. 8(b) shows us that
Dy changes continuously. However, as we will see next in
the second crisis (attractor widening) Dy may vary dis-
continuously as a function of u, though on the average
Dy changes continuously. Sudden changes in the dimen-
sion of strange attractors by the eradication of a chaotic
attractor by an infinitesimal change in a control param-
eter are called blue-sky catastrophes (7, 23] or attractor
destruction [8,9]. In this case the attractor becomes just
a chaotic transient, i.e., the orbit leaves forever the re-
gion formerly occupied by the attractor for a control pa-
rameter larger than a certain critical value. For certain
controls the Ikeda map [8] and the forced Van der Pol
equation [7] show this behavior. In these cases the orbit
goes to infinity.

Near a tangency between the stable and unstable man-
ifolds the topology of the phase space changes. In par-
ticular, new attractors may appear (sinks), which might
be periodic or chaotic. The number orfj these sinks may
be finite or infinite. These sinks usually have very small
basins of attraction [23, 27, 28]. It is worth mentioning
that for the attractor-merging crises no sinks have been
observed in the forced damped pendulum or in the forced
double-well Duffing equation [9, 23]. Also in the blue-sky
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FIG. 8. Plots in the neighborhood of u1 (solid squares).
(a) Maximum Lyapunov exponent \; vs the gain coefficient p.
(b) Information dimension D; vs u. The transient time has
been set equal to 8000 periods and only the last 300 iterates
had been plotted.
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catastrophe of a chaotic attractor, as in the attractor
generated by the forced Van der Pol equation (Smale-
Birkhoff attractor), when it loses stability approaching
its basin boundary no additional new attractors (sinks)
have been observed [7]. We believe that the destruction
of the chaotic attractor in the crisis of attractor-widening
type is due to the appearance of these sinks.

Notice that here the attractor-merging crisis is pro-
duced by a homoclinic event since the new tangencies
are created only by the corresponding manifolds of the
saddle point localized in the basin boundary. According
to Grebogi and co-workers [9], past but near the homo-
clinic tangency one has the following scaling law:

"~ (p—p)™7,
where 7™ in our case means the average time between
switches of the two metastable attractors. In Fig. 9 we
show a plot of In(T*) vs In(y — u1), together with the
straight line that best fits this set of points. For each
value of p 10000 periods had been considered after a
transient time of 300 periods. The slope of the plotted
straight line 4* and its standard deviation Av* are given
by

~¥*=0.71,
Ay*=0.17.

We have considered p3 = 1.951. On the other hand,
in Ref. [9] an expression is given for v in terms of the
eigenvalues | B_ |<| B4+ | of the saddle whose manifolds
generate the new homoclinic tangencies:

(B ) o
Y= T BB ) (10)
7 —— [ ——r—1—

-7 -6 -5 —4
In 6

FIG. 9. Plot of In(T™) vs In(6). Here § = pp — p1. T is
the average time between switches among attractors A; and
A2 (solid squares). We show also the straight line that best
fits this set of points. 10000 periods had been considered to
find T* at every u value.

For p; = 1.951 we found that S_ = 0.00606 and By =
5.217 33 and as a result v = 0.74. Though one may see a
good agreement among v* and 7y, we believe that better
statistics may improve the obtained results.

At the value p = po with 2.04 < puy < 2.05 a new
crisis arises due to the collision of attractor A with its
corresponding repeller (stable manifold) as suggested by
Fig. 5. This type of crisis classified as attractor widen-
ing is similar to the intermittent bursting occurring in
the Ikeda map for a certain set of controls [9]. There
the unstable manifold of a period-5 orbit (the attractor)
collides with the stable manifold of a different period-5
orbit. On the other hand, in our case beyond y; we have
only a single attractor A provided we are not too close
to the tangencies of the manifolds. For u = 2.06 > u,
the unstable and stable manifolds of the saddle points
P; and P} respectively transversally intersect, as seen in
Fig. 10. The similarity shared by the Ikeda map crisis
of attractor-widening type [9] with this second crisis sug-
gests to us that we have a heteroclinic tangency, since
the new tangency is given only by the colliding stable
and unstable manifolds that belong to different saddle
points.

In Fig. 11 we plot as a function of y in the neigh-
borhood of us the largest Lyapunov exponent A;. Both
quantities seem to change continuously as in the first cri-
sis at u = p31. The difference stems from the fact that
here we observe a sharp decrease in the greatest Lya-
punov exponent at p. = 2.04625. For u. the temporal
evolution of A; during 100 000 periods is shown in Fig. 12
and the last 10000 orbits of these series are plotted in
Fig. 13, which we shall call attractor C. This attractor
consists of five pieces.

The smooth curve in Fig. 12 that arises after a tran-
sient of roughly 6000 periods seems that it may be fitted
according to the function

A (LA A S S S RN B S S BN R S S SN (L B N B E B

S o
-2 |-
ol T R D T B
-1 -0.5 0 0.5 1
D
FIG. 10. For pu = 2.06 transverse heteroclinic intersec-

tions among the unstable (solid line) and stable (dotted line)
manifolds already occurs.
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Lyapunov exponent A; vs g (X).
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where ¢, a, and  are constants to be determined. If the
smooth curve in Fig. 12 exactly fits that of Eq. (11) then
the slope of the straight line

In[A1(t) — 8] = In(c) — aln(t) (12)

in the plane In(t)—In(A; —3) will give « for an appropriate
value of .
From Eq. (12) we may obtain an explicit equation for

a:
T T T l T T T l T T T ] T T T ] T T T I 17_‘
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FIG. 12. Transient evolution for the maximum Lyapunov

exponent A for u = p. = 2.046 25. 100000 iterates are con-
sidered.
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FIG. 13. Poincaré section of the chaotic attractor C (x)

for pe = 2.04625. Another chaotic attractor C is obtained
upon application of the symmetry operation S;.

A\ (t)—8
In %‘)T‘Af t0)—0

o =
t
In &

(13)

Here to = 6000. Notice that for ¢t > to the hyperboliclike
dependence of Ai(t) on time already has been settled.
A plot of a as a function of 8 must give for the desired
value of 3 a value for a with the least dispersion when all
the values of ¢ in Eq. (13) are considered. This is in fact
the minimum requirement to obtain a nearly constant
value of a. We find the optimum value 8 = 0.0391.
For that value 8 we obtain an almost straight line for
Eq. (12). This is shown in Fig. 14. A simple program for
curve fitting of the set of points of Fig. 14 with a straight
line gives the following parameters for «, In(c) and their
standard deviations Aa and Aln(c):

a = 0.996 38,
Aa =6.67 x 107°,
In(c) = 7.0223,
Aln(c) =7.15 x 1074

The obtained straight line basically coincides with that
of Fig. 14. Therefore, according to the definition of Lya-
punov exponent [16], the obtained value for 8 > 0 indi-
cates that the rate of maximum exponential expansion
(separation) of two nearby trajectories is nearly constant
at any point on the attractor C. It is easy to prove that
Eq. (11) may be simply rearranged in such a way that it
matches the maximum Lyapunov exponent definition.
Here we would like to point out how the orbit falls into
the attractor C. For u = pu., after a short transient of
around 300 periods the orbit enters for a long transient
the region formerly occupied by the big attractor A until
this orbit finally settles in attractor C. This mechanism
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FIG. 14. Plot of In(Q) vs In(N). Here Q = \i(N) -8, N
is the number of iterates (periods), and 8 = 0.0391.

occurs for all random initial conditions considered. As
discussed above, at this moment the evolution of A;(t)
has a hyperboliclike dependence governed by Eq. (11).
For p = p. attractor A is just a chaotic transient, since
it is not anymore a set of recurrent orbits [27].

According to the numerical evidence that we show, we
believe that at some value p.; the big attractor A touches
its basin boundary created by the appearance of attractor
C. The basin of attractor C must have very small dimen-
sions, just prior to destruction of attractor A, since we
do not detect attractor C for a large set of random initial
conditions, in the vicinity of its basin at 4 = u.. Here
a crisis of the attractor-destruction kind occurs as sug-
gested by Fig. 15. After a transient of 2000 periods, 200
orbits were plotted in the bifurcation diagram of Fig. 15
where, for y values on the left- or right-hand side of this
plot, attractor C' does not exist and according to our nu-
merical computations after a transient the orbit settles
again in attractor A. For u values in the vicinity of u.
as shown in Fig. 15 any orbit in the phase space with
the possible exception of a finite or infinite number of
small basins will reach the attractor C. The transient
time to reach attractor C' depends strongly on the initial
conditions.

For p > pc, as p is increased the period of attractor C
also increases, eventually becomes chaotic and finally gets
destroyed by colliding with its basin boundary. The last
is a typical mechanism for destruction of an attractor.
The existence of attractor C in a small interval near the
second crisis is another reason that suggests to us that
we are dealing with the above-mentioned sinks. Besides,
it is known that these sinks must be localized near our
attractor A, i.e., near the points of tangency of the invari-
ant manifolds [28]. In fact, the destruction of attractor A
by attractor C is possible due to the collision of attrac-
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FIG. 15. Bifurcation diagram for the azimuthal angle ¢
Vs [ .

tor A with the small basin of attractor C. Therefore we
have shown that not only are sudden jumps in size pos-
sible during a crisis of attractor-widening type but also
sudden jumps in dimension due to the appearance of at-
tractor C' at the onset of a heteroclinic tangency. On the
average the information dimension remains continuous.
However, the sum of the Lyapunov exponents A\; + Az in
attractors A and C is basically the same near 5.

As opposed to crises-induced intermittencies where at-
tractor destruction takes place, as in our case, chaotic at-
tractor destruction crises where intermittency is present
may occur, as in the case of the two-level model for the
CO; laser with modulated losses [29]. Here it has been
found that the intersection of the stable and unstable
manifolds related to saddles of period n destroys a chaotic
attractor created from a saddle of period n — 1 and as
a result a new chaotic attractor is created [30]. There-
fore one may expect a jump in the dimensions of the old
and new attractors. Notice that in the CO5 laser model
the strange attractors are stable for controls beyond the
crises, while here the observed attractor C' according to
the theory [27] and our numerical computations exists
just in the neighborhood of the crisis, i.e., during the
formation of a new heteroclinic tangency.

On the other hand, in the context of optical phenom-
ena for the Ikeda map [31] the coexistence of a periodic
attractor and Newhouse sinks has been shown. However,
here we have seen that the onset of a sink may desta-
bilize the existing attractor in a finite interval of u, be-
yond which attractor A reappears. Let us recall that our
dissipative system is reversible as opposed to the above-
mentioned model equations. That allowed us to predict
the heteroclinic crisis in terms of the collision between the
attractor and repeller. Finally, we would like to point out
that due to the symmetry property S; there is a symmet-



206 PANDO L., PEREZ, AND CERDEIRA 48

ric attractor C corresponding to attractor C. Attractor
C has been observed in our numerical calculations.

V. CONCLUSIONS

In the present paper we have studied a set of new equa-
tions that describe the long-term dynamics in a system
consisting of a thin layer of two-level atoms driven by
an external coherent field and a phase-conjugated mir-
ror. Since the variables of the system are localized on
the Bloch sphere, chaos occurs due to the explicit time
dependence of the Rabi frequencies. This time depen-
dence comes from the carrier frequency shift induced by
the PCM on the incident probe field. Crises of attractor-
merging and attractor-widening types related to the ho-
moclinic and heteroclinic tangencies respectively occur in
the present system. Crises have been studied here within
the framework of optical phenomena in a dissipative sys-
tem whose variables are defined on the sphere.

Two symmetries are useful in the study of this system.
These are related with reversibility and half-period shift
invariance of the equations. In particular, the symme-
tries allow us to predict the onset of a crisis of attractor-
widening type, since the relevant stable and unstable
manifolds are given by the attractor and repeller of the
system, respectively. The stable and unstable manifolds

which induce both crises are constructed. In the case
of crisis of attractor-merging type we find the critical
exponent by determining the eigenvalues of the saddle
point whose manifolds induce the homoclinic tangency.
This critical exponent is also determined by plotting the
power-law scaling of the average switching time among
the attractors versus a PCM gain coefficient increment.
Both calculations give very close results. On the other
hand, we have shown that in a crisis of attractor-widening
type not only jumps in size may occur but also changes in
dimension related with the destruction of the attractor in
a very small interval of the control parameter. The latter
is due to the collision of the previous attractor with its
basin boundary, which in turn is related to the onset of
new attractors induced by the tangency of the invariant
manifolds. The hyperboliclike time dependence that this
new attractor shows for the positive Lyapunov exponent
transient indicates that the maximum expansion rate is
the same in all the points on this new attractor.
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